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 Abstract* 
This paper presents an Object-Oriented Design for 
trimming dynamic models.  By applying Object-
Oriented Programming techniques to trim, in 
conjunction with an object-oriented model structure, 
generic trim rules can be developed and shared between 
different model types.  This trim design can be used to 
trim many types of models, including automobiles, 
aircraft, spacecraft, and rotorcraft.  Class hierarchies 
and interactions between the model, trim, and trim rule 
classes, as well as a general overview of Object-
Oriented Programming, are presented. 
 

Introduction 
The objective of a trim routine in simulation is to 
modify the states of a vehicle until equilibrium is 
reached.  For aircraft, this equilibrium is typically 
defined as the set of states for which all body axis 
translational and angular accelerations are zero. Trim is 
used to properly initialize an aircraft so that flight can 
begin in any flight situation and maintain an initial set 
of specified states after the simulation switches into 
run/operate mode.  For example, trimming on the 
ground involves adjusting the height of the aircraft until 
the vertical acceleration reaches zero.  This is done so 
the aircraft does not fall, or the landing gear are not so 
compressed to cause the aircraft to jump, when the 
simulation is switched into the operate mode.  In 
another example, the aircraft throttle(s), aileron, rudder, 
and elevator can be adjusted so that the aircraft 
maintains straight and level flight with no pilot inputs 
after the simulation begins running. 
 

                                                           
*Aerospace/Software Engineer, Member 
Copyright © 2000 by the American Institute of 
Aeronautics and Astronautics, Inc.  No copyright is 
asserted in the United States under Title 17, U.S. Code.  
The U.S. Government has a royalty-free license to 
exercise all rights under the copyright claimed herein 
for Governmental purposes.  All other rights are 
reserved by the copyright owner. 

Object-Oriented Design 
An Object-Oriented Design is made up of classes.  Each 
class encapsulates a well-defined set of tasks and 
provides an interface for other classes to interact with it.  
Each class contains a set of methods (functions) and 
member data that define the behavior of the class.  
Through encapsulation, the class becomes a black box 
where only a public interface is available.  This allows 
classes to limit the access of methods and member data 
to other classes.  Methods and data can be defined as 
public, protected, or private.  Public methods are 
accessible to any class.  Protected methods only allow 
derived classes to access the method.  Private methods 
and data are accessible only to that class. 
 
In addition to defining their own methods, classes can 
share and overload† the methods of other classes 
through use of inheritance.  Inheritance defines a 
relationship between classes, wherein one class shares 
the structure and/or behavior of another class [1].  The 
parent class is the class from which inheritance is 
taking place.  The class that is inheriting from the 
parent class is the derived class.  Inheritance is often 
referred to as an “is a” relationship. Figure 1 shows a 
simple Unified Modeling Language (UML)[2] class 
diagram depicting the relationships between a fighter 
and missile classes.  The AIM-9 is a derived class, 
which inherits from the Missile class, the parent class.  
An AIM-9 “is a” missile.   
 

                                                           
† redefine or add additional functionality 

Figure 1 Simple UML Class Diagram 
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An object is a particular instance of a class.  When an 
object is created, it maintains all of its own data 
separate from all other objects of the same type‡.  In 
this way, an arbitrary number of copies of a class can be 
created and used without data being mixed between the 
different instances of a particular class.   Multiple 
fighter objects can be created, where each maintains its 
own private data members, such as altitude, orientation, 
accelerations, etc. 
 
Any place where a parent class is used, a derived class 
can be substituted because of inheritance.  For example, 
if a Fighter class contains Missiles, “has a” 
relationship, any class that derives from the Missile 
class can be used in place of the Missile class used by 
the Fighter.  An AIM-9 can be used because the AIM-9 
“is a” missile.  The AIM-9 class contains all the 
functionality of the Missile class, plus the additional 
functionality specific to that particular type of missile.  
The Fighter class can only call public methods that are 
declared in the Missile class.  Additional methods 
declared in the derived classes of the Missile class 
cannot be accessed, because the parent class has no 
knowledge of the data and methods declared in classes 
that derive from it. 
 
Polymorphism is the overloading of a method of a 
parent class in a derived class.  It is used to extend or 
replace functionality in the parent class.  Methods that 
can be overloaded are marked by the virtual keyword in 
C++.  The correct overloaded method to call is decided 
at run time.  The correct method to call is not decided at 
compile time because the method to call depends on the 
exact type of the object being accessed, which, because 
of inheritance, may be the parent class, or any classes 
that derive from it.  For example, assume the Missile 
class contains a public virtual method named update 
that performs some function.  The AIM-7 class 
overloads the update method to add AIM-7 specific 
code, but the AIM-9 class does not overload update.  If 
the fighter object has both an AIM-9 and an AIM-7 
object, and calls update on both, the update method 
from the Missile class will be called for the AIM-9 
object, but the overloaded update method will be called 
for the AIM-9 object.  This occurs even though the 
fighter object has no knowledge what types of missile 
objects are being used. 
 
 
 
 
                                                           
‡ Data can be shared between instances of a class, but is 
beyond the scope of this paper. 

LaSRS++ Trim Classes 
The following classes are used in the Langley Standard 
Realtime Simulation in C++ (LaSRS++)[3] trim design 
and are shown in Figure 2. 

Vehicle Class 
A vehicle’s states propagate through time in reaction to 
external forces and moments.  The forces and moments 
determine the translational and angular accelerations of 
the vehicle. 

Aircraft Class 
The Aircraft class inherits from the Vehicle class.  An 
aircraft is a vehicle that flies through an atmosphere.  
The dynamics of the aircraft are primarily influenced by 
aerodynamic, engine, and gear forces and moments.   

TrimRule Class 
The TrimRule class defines relationships between trim 
states, errors, and gains used to trim a vehicle object.  
The trim rule states and errors are based on vehicle 
data. Trim states are modified based on errors and 
gains, until the error is within a specified tolerance.  
Each trim rule can have multiple sets of states, errors, 
and gains as well as constraints.  A constraint modifies 
a state to a predetermined value that can be a function 
of other states or a constant value.   

AircraftTrimRule Class 
The AircraftTrimRule class inherits from the TrimRule 
class.  It adds the ability to access aircraft data, in 
addition to vehicle data, for use in trim states and 
errors.  Some of the LaSRS++ aircraft trim rules are 
listed at the end of this paper. 

Trim Class 
The Trim class is responsible for performing all the 
basic trim operations on a vehicle. These operations 
include selecting trim rules, checking for rule conflicts, 
setting target values for body translational and angular 
accelerations, and finding a trim solution. 
 
A trim solution is found by operating on a list of trim 
rules until a solution is found or problems finding a 
solution are detected.  Some of the conditions checked 
to determine if a solution could not be found are if the 
iteration count reaches a preset maximum and no 
solution is found, or an error value reaches a steady 
state value that is not within the specified tolerance.  In 
the event of a problem locating a solution, trim states 
and errors are output to aid in determining which states 
had trouble trimming. 
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AircraftTrim Class 
The AircraftTrim class inherits from the Trim class.  It 
selects aircraft trim rules based on the desired aircraft 
initialization.  Four additional states exist in the 
AircraftTrim class for the purpose of overriding cockpit 
values while trimming.  These four data members are 
aileron_at_trim, elevator_at_trim, rudder_at_trim, and 
throttle_at_trim.  These are used as generic inputs for 
roll rate, pitch rate, yaw rate, and propulsive thrust 
respectively.  Each different aircraft maps the four 
generic inputs to inputs specific to that aircraft.  
Depending on the control system, elevator_at_trim may 
drive the elevator position directly, and a separate trim 
variable drives the pitch stick.  This is often done for α, 
Nz, and pitch rate command systems.  Once the aircraft 
is trimmed, any offsets in control positions can be back 
driven into the hardware, displayed so the pilot can 
match the inputs, or cockpit inputs can be biased based 
on the trimmed values. 
 
The AircraftTrim class does not contain any logic for 
trimming.  All of the trimming logic is contained in the 
parent class, Trim.  Through inheritance, the 
AircraftTrim class can use these same methods.  In this 
way, the methods in Trim can be used on both vehicles 
and aircraft. 

 
Trim Algorithm 

Each simulation object uses either a trim or an aircraft 
trim object to trim itself, depending on the object type.  
When the simulation is switched into trim mode, all the 
simulation objects are trimmed in sequence.  The 
following sections give the basic outline of the 
trimming procedure. 

Rule Setup 
Before the simulation objects are trimmed, each must 
setup initial values and chose the rules that will be used 
to trim the object.  Typically, rules are chosen that zero 
out all body translational and angular accelerations.  
How each of the body translational and angular 
accelerations are trimmed to zero is dependent on the 
rules that are selected.  It is sometimes desirable to trim 
an acceleration term to a known non-zero value, or not 
to trim it at all. Trimming to non-zero accelerations is 
often done to match old data or third-party test cases.  
An acceleration term might not be trimmed at all on an 
aircraft without any engines; where there is no thrust to 
trim out the body-x axis acceleration. 
 

Figure 2 LaSRS++ Trim UML Class Diagram 
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Trim Loop 
After the trim rules have been setup, the solution 
process begins.  A trim solution is found by looping 
until a solution is found, a maximum iteration count has 
been reached, or the simulation exits trim mode.  A 
maximum iteration count is hit when one or more error 
signals did not converge to zero.  This usually occurs 
when an error does not converge fast enough, 
converges, but oscillates around zero, or reaches a 
steady state value that is not within the specified 
tolerance.  An error that converges too slowly usually 
indicates that the magnitude of a gain that was too 
small.  An error that converges quickly, but oscillates 
around the solution, typically results when the 
magnitude of a gain was too large.  Warnings are 
printed if trim believes it has encountered a steady state 
error.  A steady state error usually indicates that one or 
more variables have reached a limit, for example, a 
control surface deflection limit. 
 
After the simulation object has been successfully 
trimmed, the trim routine exits and the aircraft is 
prepared to operate at the flight condition specified. 
 

Methods 
Figure 3 shows a UML sequence diagram[2] listing the 
events that occur when trimming an aircraft.  The 
methods called are described below. 

Trim Methods 
makeRules 

Before trim is initiated, the user selects the trim rules to 
be used.  This forms the trim_rule_list on which the 
trim object will operate. 

selectRules 
This method is called by the makeRules method and is 
responsible for determining which rules the user has 
selected.  Once the rules have been identified, they are 
added to the trim_rule_list using the addRule method. 

defineNameAndUnitLists 
Once the list has been formed, the names and units of 
the states, errors, and gains of all rules on the list are 
gathered and stored.  The names will be used to ensure 
that two conflicting rules are not selected, and for 
output purposes. 

checkForConflictingRules 
This method warns the user if two conflicting rules are 
selected.  Conflicting rules may prevent the vehicle 

from trimming or may result in a condition where 
multiple solutions exist.  Two rules conflict if either the 
same state is modified or the same error is monitored by 
multiple rules.  No preventive action is taken in the 
event of a conflict.  Combinations of states and errors 
that do not directly conflict are not detected.  For 
example, selecting trim rules that specify angle of 
attack, pitch angle, and flight path angle values would 
cause a conflict but not be detected. 

solve 
Before trimming begins, the simulation object is set up 
at the user-defined conditions.  This is accomplished by 
having each trim rule initialize its internal states to the 
simulation object’s initial states.  Then all the trim rules 
update the states in the simulation object with their 
internal states, including any constraints.  This ensures 
that constraints are set up properly in the first pass, ands 
is accomplished through calls to the trim rule methods, 
calculateTrimVariables and updateStates. 

updateValues 
Calling this method copies all the trim state, error, and 
constraint values from the individual trim rules into the 
trim object.  This is done so that the data can be 
recorded for diagnostic purposes. 

analogTrim 
This method is called by the solve method and performs 
one iteration in the trimming process.  Each iteration 
involves updating the equations of motion, calculating 
new trim variable values, and pushing the new trim 
states back into the vehicle from the rules. 

Aircraft Trim Methods 
selectRules 

The AircraftTrim selectRules method overloads the 
virtual selectRules method of the Trim class. This 
method adds logic for selecting aircraft trim rules based 
on the user’s specifications.  The aircraft trim rules 
selected are added to the rule list through the addRule 
method. 

Trim Rule Methods 
calculateTrimVariables 

The calculateTrimVariables method updates the states, 
errors, and gains for each trim rule selected.  The states 
are gathered from the current set of vehicle data.  The 
errors are computed based on the deviation of vehicle 
data from target values.  Gains are updated from the 
associated trim object. 
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calculateNewStates 
This method calculates new trim states.  The following 
formula is normally used to calculate the new states 
based on the states, errors, and gains calculated in the 
previous iteration.  Other methods of calculating the 
next set of trim states can be added by overloading this 
method. 
 

gainerrorstatestate ⋅+=  
 

Using this formula to calculate new trim states results 
in a very stable solution process, but may take longer to 
converge on a solution than some other trim methods. 

updateStates 
This method updates vehicle data that correspond to the 
trim states of the rule.  Any constraints contained in the 
trim rule are recalculated and vehicle data is set 
accordingly. 

Figure 3 Trim UML Sequence Diagram 
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Aircraft Trim Rule Methods 
The AircraftTrimRule class does not add any additional 
methods to the TrimRule class.  The only change is in 
the call to the constructor.  When constructed, an 
aircraft trim rule object uses an aircraft object and an 
aircraft trim object argument, as opposed to a vehicle 
object and a trim object used by the TrimRule class. 

calculateTrimVariables 
The calculateTrimVariables method updates the trim 
states, errors, and gains for each aircraft trim rule 
selected.  The states are gathered from current aircraft 
or vehicle data.  The errors are computed based on the 
deviation of aircraft data from their corresponding 
target values.  Gains are updated from the associated 
aircraft trim object. 

updateStates 
This method updates aircraft data based on trim states.  
Any constraints contained in each aircraft trim rule are 
recalculated and set in the aircraft. 

Vehicle Methods 
vehicleEOM 

Several processes take place when the equations of 
motion of a vehicle are updated.  These include 
processing cockpit inputs, recalculation of derived data, 
calculation of accelerations, and updating vehicle 
systems.  The equations of motion are also updated 
each iteration while the simulation is running.  During 
trim, a vehicle does not integrate any accelerations to 
determine the new set of vehicle data.  The new vehicle 
data are determined by the trim rules. 
 
Processing cockpit inputs updates the values of the 
cockpit inputs into the vehicle.  In trim, however, 
cockpit inputs are typically overridden by internal trim 
variables. 
 
Derived data are recalculated to make sure the vehicle 
has a consistent set of states.  For example, making sure 
angle of attack (α), pitch (θ), and flight path angle (γ) 
are consistent for aircraft. 
 
Accelerations are calculated from the vehicle data.  The 
accelerations of interest to trim are typically body axis 
translational and angular accelerations. 
 
The vehicle systems are updated so that any data in the 
systems are consistent with the current frame.  Vehicle 
system updates can occur after the derived data 
calculations or after the acceleration calculations, 

depending on the nature of the individual vehicle 
system.  Some examples of vehicle systems include fuel 
systems, control systems, and propulsion systems. 

Aircraft Methods 
The differences between the Vehicle and Aircraft 
classes exist in methods called by the VehicleEOM 
method.  The Aircraft class overloads the methods 
called by VehicleEOM, so that aircraft trim control 
variables can be properly mapped to the aircraft 
cockpit.  For the four control variables used by aircraft 
trim (see AircraftTrim Class), each aircraft individually 
determines which trim control states override which 
cockpit inputs or other aircraft data.  Aircraft also have 
additional derived data, which are calculated. 
 

Filters and Integrators 

Filters and integrators require special attention when 
trimming vehicles.  It is desirable, during trim, for 
filters to respond with their steady state outputs.  Two 
different behaviors for integrators are used in trim.  In 
the LaSRS++ framework, every filter and integrand 
knows the current mode of the simulation.   
 
When the simulation is in trim mode, filters set their 
outputs to their steady state output values, t = ∞ (s = 0 
in the Laplace domain).  In this way, all internal 
derivatives of the filter are zero, such that, when the 
vehicle switches from trim to operate mode, there are 
no undesired transients. 
 
Integrators can behave in two different manners during 
trim.  If an integrator has a known initial value and 
derivative, the integrator can be held at the initial value 
and derivative.  An example of this would be a mass 
integrator for burning fuel.  The initial fuel amount is 
specified, and the initial burn rate can be directly 
computed from the throttle settings of the engines.  If 
allowed to integrate during trim, the vehicle would burn 
fuel before it ever went into operate. 
 
The second type of behavior is for integrators that must 
have derivatives equal to zero, or some other known 
value, but whose initial value is not known.  In this 

Figure 4 Pitch Loop Integrator 
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case, a trim rule must be added to monitor the 
integrators derivative until the target value is reached.  
An example of this is a pitch loop integrator is shown in 
Figure 4. 
 

Earth Models 
The LaSRS++ framework has three different earth 
models, flat, round, and ellipsoidal.  The earth can also 
be rotated for the round and ellipsoidal models.  Since 
non-flat earth models can be used, the assumption that 
trimming ailerons and elevator positions to zero will 
make the roll and pitch rates zero is invalid.  Depending 
on the location of the vehicle relative to the world and 
the heading, small elevator, aileron, and rudder inputs 
may be needed to zero out pitch, roll, and yaw 
accelerations relative to the earth’s surface, due to the 
curvature and rotation of the earth.  
 

Results 
This run was conducted at an altitude of 10,000 feet, 
target Mach number of 0.5, in a coordinated turn at a 10 
degree bank angle, with a target ground track of 45.0 
degrees.  A rotating ellipsoidal earth model with inverse 
radius squared gravity was used.  The aircraft trim rules 
used were Velocity Mach, Pitch Rate, Flight Path, 
Alpha Trim, Coordinated Turn, and Lateral Surfaces.  
The error tolerance was set to 1E-10 and took 900 
iterations to find a solution. The resulting aircraft states 
are listed in Table 1.  Plots of interesting trim states and 
errors vs. iteration can be found at then end of this 
paper. 

Velocity Mach 
The Velocity Mach rule adjusts Vtotal until the target 
Mach number (0.5) is reached.  This rule makes sure 
the Mach number specified is correct during trim, even 
if another rule trims the altitude. 

Alpha Trim 
The Alpha Trim rule adjusts the angle of attack until the 
body-Z axis acceleration is zero. 

Flight Path 
The Flight Path rule is responsible for setting up the 
throttle and the pitch angle of the aircraft.  The throttle 
is adjusted until the body-x axis acceleration is zero.  
The pitch angle is adjusted until the specified flight 
path angle (0.0) is reached. 

Coordinated Turn 
The Coordinated Turn rule trims the aircraft into a 
steady turn, v dot equal to zero.  This is accomplished 

by adjusting the sideslip until the body sideward 
acceleration, v dot, reaches zero.  The yaw angle is 
trimmed until the desired ground track angle (45.0 
degrees) is reached.  The bank angle is set to the 
specified bank angle (10.0 degrees). 

Lateral Surfaces 
The Lateral Surfaces rule adjusts the aileron_at_trim 
and rudder_at_trim values to zero out the body roll and 
yaw accelerations respectively.  

Pitch Rate 
The Pitch Rate rule adjusts the elevator_at_trim until 
the body pitch acceleration is zero. 

Table 1 Trim Results 

h Altitude  10,000 ft 
M Mach 0.5 
Vt Vtotal 538.70 ft/sec 
IAS Indicated Airspeed  276.85 knots 
qbar Dynamic Pressure  254.73 psf 
α Angle of Attack  5.0818 degrees 
β Sideslip  -0.25069 degrees 
hdot Altitude rate  7.47e-12 ft/sec 
u Body-X velocity  536.58 ft/sec 
v Body-Y velocity  -2.3570 ft/sec 
w Body-Z velocity  47.717 ft/sec 
p Body roll rate  -0.0518 deg/sec 
q Body pitch rate  0.1021 deg/sec 
r Body yaw rate  0.5875 deg/sec 
φ Roll  10.0 degrees 
θ Pitch  4.9617 degrees 
ψ Yaw  46.128 degrees 
pdot Body roll acceleration 6.70e-12 deg/sec^2 
qdot Body pitch acceleration -6.65e-10 deg/sec^2 
rdot Body yaw acceleration 6.70e-11 deg/sec^2 
udot Body X acceleration -1.39e-12 ft/sec^2 
vdot Body Y acceleration -1.56e-11 ft/sec^2 
wdot Body Z acceleration -2.45e-12 ft/sec^2 
δa aileron_at_trim -0.4942 non-dim 
δe elevator_at_trim -3.1240 non-dim 
δr rudder_at_trim 1.2146 non-dim 
δt throttle_at_trim 0.1426 non-dim 

 
Conclusions 

There are many advantages to using an object-oriented 
trim design.  In an object-oriented framework, a set of 
generic trim rules can be developed that work on any 
type of simulation object.  For aircraft, generic aircraft 
trim rules can be used.  Any aircraft that derives from 
the Aircraft class, 757, F-16, etc., can all use the same 
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rules for trimming a given condition.  Through the 
addition of a generic method (function) to check for 
rule conflicts, complex sections of code to check for 
specific rule conflicts are no longer needed and no 
longer need to be maintained when a new rule is added.  
The only vehicle specific code required is to map the 
generic control variables into the correct cockpit input 
on the vehicle. 
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Aircraft Trim Rules 
All of the following rules derive from the AircraftTrimRule class.  See Table 1 for symbol definitions. 
Notation: θ,δt = target – indicates Pitch and throttle_at_trim are set to target values.   

Velocity Rules State Error Constraints 
Velocity Drag Vtotal u dot  
Velocity Mach Vtotal mach  
Velocity Speed Vtotal speed  
Velocity Alpha Vtotal w dot  

 Alpha Rules State Error Constraints 
Alpha Trim α w dot  
Constant Alpha   α = target 
Loaded Loop α Nz q = f(w dot world relative , u air relative) 

Longitudinal Rules State Error Constraints 
Constant Pitch δt u dot θ = target 
Constant Pitch/ Constant Thrust   θ,δt = target 
Constant Thrust θ Vtotal dot δt = target 
Constant Thrust, Pitch θ w dot δt =  target 
Constant Thrust, Rate of Climb θ h dot δt = target 

δt u dot  Flight Path  
 θ γ  

θ w dot  Pitch Thrust 
 δt u dot  

δt u dot  Rate of Climb 
 γ h dot  

Lateral Rules State Error Constraints 
ψ track β = f(u, φ, Vtotal) Bank into Wind 

 φ v dot  
ψ track φ = target Coordinated Turn 

 β v dot φ,θ,ψ dot = f(g, θ, φ, u, w) 
ψ track  Crab into Wind 

 β v dot  
ψ track φ,θ,ψ dot = f(g, θ, φ, u, w) 
β v dot  

Loaded Roll 
 
 φ u dot  

  ψ = target No Lateral Motion 
   δa, δr,  φ, φ dot , θ dot , ψ dot = 0 

φ track  One Engine Out 
 β v dot  

ψ track β = target Steady Side Slip 
 φ v dot  

 Other Rules State Error Constraints 
h vertical acceleration δt = target 
θ q dot  
φ p dot  

Ground Trim 
 
 
 ψ track error  

δa p dot  Lateral Surfaces 
 δr r dot  
Pitch Rate δe q dot  
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